HEDNO

Non-Interconnected Islands

15.05.2025

Islands Network Operation Department

Non-Interconnection Islands (NIIs)

Non-Interconnection Islands' (NIIs) Profile

NIIs Challenges and Specifics

Isolated Electrical Systems:

- Single feeding- no alternative- great variations among islands' characteristics (between 100 kW and 650 MW): different capacity mechanism
- Special conditions per island maintain voltage and frequency for each and every of the 28 isolated electrical systems
- Technical constraints impact on the RES exploitation (requirement for rotating reserve)

Seasonality showing great deviation between minimum and maximum load (summer)

Single conventional units' producer on each island

- Old units
- Predefined energy mixture and unit size

- Production technology has not been adapted to new era requirements (Thermal & RES units)
 - Due to technical and regulatory special conditions
- Volatile regulatory framework
- Technical constraints for RES margins maximum RES margin while keeping the ES stability according to regulator's decisions
- Ancillary services to be offered by several producers

Great wind capacity

High solar irradiation

Load and wind forecast

- Historical load and production data
- Meteorological forecasts
- Neural Networks training

OUTCOMES & BENEFITS:

- Load and RES Production are estimated per hour
- Inputs of RDAS
- RES potential exploitation

Rolling Day-ahead-scheduling (RDAS)

OUTCOMES & BENEFITS :

- Production optimal exploitation
- Reliable feeding
- Ad-hoc reserves
- Cost minimization

Standard SCADA-EMS functionalities

Basic SCADA functionalities

Real time supervision and operation (1 sec time granularity). Production data and management results are stored in database.

Automated management procedures for wind & HPS managmenent – no need for human intervention

PV estimation per island, based on sampling of real time field measurements, estimation to be refreshed every minute

RES penetration to be maximised while maintaining grid stabuility and reliable feeding of the islands

Availability declarations for RES & thermal units – Production declation for HPS Load & RES forecast - > Rolling Day Ahead scheduling

Control Centre Functionalities

Real-time scheduling & dispatch

Management on islands under very high RES penetration

Development of SCADA Systems for EMS

Central Control Room

- Located in Athens in the NII
 Department's offices
- Operates Local Control infrastructures of the islands

SCADA – EMS architecture for the 28 NIIs

ICT infrastructures

AEAAHE 26/10/2023 10:00:27

- Central Control Infrastructure in Athens
- 28 Local SCADA systems on every island
- 39 Local Control systems for the Wind Parks
- 3 Local Control systems for the Hybrid Power Stations
- 80 Local Supervision Systems for PVs

26/10/2023 28915 39.73

12807 19:2

2891

1742

ΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΕΠΟΠΤΕΙΑΣ 27 ΗΣ ΤΩΝ ΜΔΝ

Management of RES from the SCADA-EMS

HEDNO

Management algorithm

- Algoritmhm operation cycle , 1 minute
- Constraints imposed by the thermal units in operation and the WP dynamic penetration coefficient (Cd)
- Automatically reduction of the Cd through an algorithm under specific predifined conditions

АЕААНЕ 26/10/2023 09:39:59	2510/2023 27655 40.49 % ΗΣΛΕΣΒΟΥ / ΑΙΟΛΙΚΑ ΠΑΡΚΑ 🚳 🕵 😃 🕰 🗇 🕰													
ПАРАГО	2ГН АП	10669	w	ΠΕΡΙΟΡΙΣΜ	ΌΥ	15564 kW			Cd %		40			
ΔΙΕΙΣΔΥ	(ΣΗ ΑΠ	39.33 %		ΔΥΝΑ		ΟΡΙΣΜΟΣ		10834	kW			Y	40	
ΣΑΩΛ ΠΡΟΗΓΟΥ	ΜΕΝΟΥ ΕΤΟΥΣ	0	0	ΕΠΙΛΕΓΜΕΝΟ	Σ ΕΛΑΧΙΣΤΟ		εмοε	10834 kW				_		
ΣΑΩΛ ΤΡΕΧΟΙ	ΝΤΟΣ ΕΤΟΥΣ	5363		ΣΥΝΟΛΙΚΟ Γ	ΙΕΡΙΘΩΡΙΟ Α	ПОРРОФН	ΣΗΣ	10834 kW	39.18 %			ΠΑΡΑΜΕΤΡΟΙ	ΑΛΓΟΡΙΘΜΟΥ	
		ENIALAZ EN Controi Fia ande	TO/JE		ΕΙΡΙΣΗ ΟΛΩ ΑΛΓΟΡ	N TON ATI N Nemoy		λειρ Αιτιολογής	oximete H Xeipo	z εnτο/	HE ENTOAHE -			
ΟΝΟΜΑ ΑΠ	ΑΔΕΙΟΔΟΤΗΜΕΝΗ ΙΣΧΥΣ (kW)	ΔΙΑΘΕΣΙΜΗ ΙΣΧΥΣ (kW)	ΔΙΑΧΕΙΡΙΣΗ ΑΠ ΜΕΣΩ	ΧΡΟΝΟΣ ΛΕΙΤΟΥΡΓΙΑΣ (min)	SETF			ΙΑΡΑΓΩΓΗ ΑΠ (KW)		ΑΩΛ (h)	ΥΠΟΧΡΕΩΣΗ ΑΩΛ	ρχομίζη Για Επικοίνα	ΑΠΩΛΕΙΑ ΣΝΙΑΣ	
ΣΙΓΡΙ	2025	2025	ΑΛΓΟΡΙΘΜΟΥ	8667	78.94%	1598 kW		1600		5301.6	ΠΙΝΑΚΑΣ		ΟΙΝΤ ΓΙΑ ΤΙΣ ΩΡΕΣ	
ΚΑΣΤΡΙ	2700	2700	ΑΛΓΟΡΙΘΜΟΥ	4262	79.09%	2135 kW		2134		5024.8	ΠΙΝΑΚΑΣ		ΟΙΝΤ ΓΙΑ ΤΙΣ ΩΡΕΣ	
ΑΝΤΙΣΣΑ	4200	4200	ΑΛΓΟΡΙΘΜΟΥ	685	78.94%	3315 kW		3249		5219.5	ΠΙΝΑΚΑΣ		ΟΙΝΤ ΓΙΑ ΤΙΣ ΩΡΕΣ	
ΤΕΡΠΑΝΔΡΟΣ	4800 4800 AAFOPIOMOY 6		685	78.94%	3789 kW		3686		5234.2	ΠΙΝΑΚΑΣ		ΟΙΝΤ ΓΙΑ ΤΙΣ ΩΡΕΣ		

АН	10- 10-	01-2024):08:55	45767	28.82 %					ΗΣ ΛΕ	ΣΒΟΥ /	ΣΥΝΟΛ	ІКН ЕПО	οπτεια	۱						
F				OEPM	ОЕРМІКН ПАРАГОГН (kW) ПАРАГОГН АП (kW)									ПА	РАГΩГН	rBΣ (kW)		ΠΑΡΑΓΩΓΗ ΣΒΒ (KW)		
		45/6	/ 		32577		12296			_	892									
Ľ	AIXMH ΠΡΟΗΓ. ΕΤΟΥΣ (kW)						En							ΕΓΓΥΗΜΕΝΗ ΙΣΧΥΣ				ΕΓΚΑΤΕΣΤΗΜΕΝΗ ΙΣΧΥΣ		
	AIYMH		EDAT (MA)	-	99400			ΔΙΑΧΕΙΡΙΣΗ ΑΠ ΜΕΣΩ			3021			Y	TIOA SE	POINT		YTIOA, SETPOINT		
	47493	11845	19:30		90700			ΑΛΓΟΡΙΘΜΟΥ												
ih.	Cd%			ΕΦΕΔΡΕΙΑ			KAQ	ΚΑΘΑΡΟ ΦΟΡΤΙΟ ΑΛΓ/ΜΟΥ												
		40		10423				44997												
	AYNAN		ριορισμος	ne	ΡΙΟΡΙΣΜΟΣ	T.E.	ПЕРК	ΣΥΝΟΛΙΚΟ ΠΕΡΙΘΩΡΙΟ ΑΠΟΡΡΟΦΗΣΗΣ												
E.	17999				22914		137	13725 30.50 %												
	_		_	_		_	_	_	_	_	_	_	_	- 10			~ ~			
															(O)	NO	NO NO	NO NO		
															0	101		0		
					_									10		IOI	10	101		
															A	A	A	A		
												_								
											_									
			_																	
	0	. (14	161 0	7947	7942	7652	7575	0	0	0	0	0	0		2016	2560	3638	4082	892	
	HZ	2 H2	Z3 HZ	HZ 8	HZ 9	HZ 10	HZ 11	HZ 12	Φ ΟΡ.1	Φ0P.2	Φ O P.3	ΦΟΡ.4	ENOIK/N	A	АП 1	АП 2	АП 3	АП 4	ΦΒ	

<u>Results – Benefits :</u>

- Equality and transparency in WP and HPS management
- Automated management procedure reducing human intervention
- Predicted behaviour of the WPs in cases of communication loss

Graphical overview of real time data

Development of Business Intelligence Tools

- Big Data Analytics
- Connection with DB to data resolution of a sec
- User friendly graphics and custom reporting for each user

<u>Results – Benefits :</u>

- Quick overview
- Ad-hoc changes in managing RES
- KPIs (RES penetration, time offline, etc.)
- Feedback and evaluation of aforementioned changes

Forecast – Real time production

Data analytics

Tilos HPS (on Kos-Kalymnos Electrical System)

- Kos-Kalymnos island complex consists of 9 islands
- **APD**₅ = 94,8MW
- Batteries NaNiCl2 : 2,4MWh
- Wind turbine 800kW
- PV 160kWp
- Guaranteed power 400 kW
- In operation since 10/2019
- 100% exploitation

Ikaria HPS

Hybrid Energy Project (pump storage)

- Combines hydro and wind guaranteed power 2,55 MW
- *APD*_5 = 7,3 MW.
- Consists of 2 hydro stations (1 MW & 3 MW),

2 water reservoirs gathering water and 1 wind park (2,7 MW).

Astypalea

Pilot Project in Astypalea

- ✓ Hybrid Power Station:
 - PV (~3 MWp)
 - Battery Storage System (~7.2 MWh)
- ✓ Electric vehicles, as flexible loads

To conclude...

Innovative ongoing projects:

Two small size islands (Ai Stratis, Astypalaia)

Hybrid power station with batteries - High RES Penetration up to 80% yearly

Thermal units to be switched off – frequency to be regulated by storage (battery/inverters)

Challenges to be faced

Smooth transition between alone operation of HPS and parallel operation

Droop adjustments

Automatic Generation Control fine tuning to include storage

Instant RES penetration of 78%

deddie.gr

Islands Network Operation Department

Syggrou Av. 98-100, 117 41, Athens

E: infodeddie@deddie.gr