

Clean energy for EU islands: **Solar carpark prefeasibility study** Cres-Lošinj, Croatia

Clean energy for EU islands

## Cres-Lošinj solar carpark prefeasibility study

## Publication date: 19/01/2022

# Authors: Ulrich Terblanche (3E), Wannes Vanheusden (3E) Reviewers: Marina Montero Carrero (3E), Jan Cornillie (3E)

## Dissemination Level: Public

# Published by

## Clean energy for EU islands

www.euislands.eu | info@euislands.eu

#### DISCLAIMER:

This study has been prepared for the European Commission by the Clean energy for EU islands secretariat. It reflects the views of the authors only. These views have neither been adopted nor in any way approved by the Commission and should not be relied upon as a statement of the Commission's or DG ENER's views. The results of this study do not bind the Commission in any way. The Commission does not guarantee the accuracy of the data included in the study. Neither the Commission nor any person acting on the Commission's behalf may be held responsible for the use which may be made of the information contained therein.

This document is based on an application submitted by an island-related organisation to a Call for 'Technical Assistance' organised as part of the Clean energy for EU islands secretariat and entered into solely between the Clean energy for EU islands secretariat and the island-related organisation for whom it was drafted, and no third-party beneficiaries are created hereby. This document may be communicated or copied to third parties, and third parties may make use of this document without the prior written consent of the Clean energy for EU islands secretariat and/or its author. The Clean energy for EU islands secretariat and the author will not be liable to any parties (the island-related organisation or third parties) for services rendered to the island-related organisation, or for the consequences of the use by the island-related organisation or a third party of this document.

## **Summary**

The Cres-Lošinj archipelago published in 2019 its Clean Energy Transition Agenda, where electricity production by solar PV was identified as a stepping stone in the decarbonisation of the archipelago's electricity sector.

The project considered in this report is referred to as "INSOLARCARPARK". It is located in the town of Mali Lošinj, Cres-Lošinj archipelago, Croatia. This is a roof mounted PV power plant which serves as a shading area for vehicles in a car park, with a total peak power (DC) of 518.1 kWp. The PV modules are mono-crystaline and installed at a 4° tilt angle, with West and East orientations aligned with the orientations of the car parking bays. The project includes string inverters.

Table 1 shows expected values for the average in-plane irradiation, the initial performance ratio, and the average expected yield (P50).

| Table 1: Average | expected | yield (P50) |  |
|------------------|----------|-------------|--|
|                  |          |             |  |

| Parameter                                  | Value  | Unit       |
|--------------------------------------------|--------|------------|
| System peak power                          | 518.10 | kWp        |
| Mean yearly in-plane irradiation           | 1,504  | kWh/m²/yr  |
| Performance ratio at plant start-up (PR) * | 88.3%  |            |
| Specific yield (P50) - year 1 **           | 1,313  | kWh/kWp/yr |
| System yield (P50) - year 1 **             | 680    | MWh/yr     |
| Yearly degradation factor                  | -0.5%  |            |
| System yield (P50) - 20 years              | 12,976 | MWh        |

\* PR without plant availability and module degradation (see section 4.1)

\*\* Including availability and average degradation during year 1 (see section 4.2)

This study indicates that a 518.10 kWp solar PV car park at Cres-Lošinj will produce 12,976 MWh of electricity over a project lifespan of 20 years, based on a P50 probability. The system will cost approximately €580,525 to complete and €4,660 per year to operate and maintain using a third-party 0&M contractor.

## Glossary

| CAPEX                                             | Capital expenditure, representing both the hardware, installation and soft costs of a solar PV system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OPEX                                              | Operating expenditure, specifically for the operation and maintenance of the solar PV system done under contract.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Peak power (Wp)                                   | This is the power of a PV module for standard test conditions (STC). The sum of the modules of a power<br>plant then gives the total peak power of the power plant, expressed in kWp or MWp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Performance ratio (PR)                            | The performance ratio (PR) is an important indicator for characterising the behaviour of a PV plant. The PR represents the ratio in % between the actual and theoretical energy production taking into account the available sunlight in the plane of the PV modules. It is determined by the choice of system components as well as design and maintenance requirements, but also by the location and vicinity of the project. The result of the initial PR indicated in this report represents the PR at plant start-up.                                                                                                                                                                                                                                                                                                                                                                                       |
| Average expected yield (P50)                      | This is the average expected long-term production for a PV plant (i.e. with a 50% probability of exceeding it). It can be presented as production in MWh/year or as the ratio between production and peak power of the plant. In the latter case, we speak of specific yield, generally presented in kWh/kWp/year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Yield with 90% probability of<br>exceedance (P90) | The value of the P90 gives the expected yield in 90% of cases (90% probability of exceeding). In other words, the risk of not reaching this value is 10%. This results from the combination of all the uncertainties of the yield calculation, particularly the uncertainty related to the annual variation of the irradiation, obtained by means of probability laws.<br>When calculating the P90, it is important to differentiate observation periods, which can vary from 1 year to 20 or 25 years depending on the life of the project. The different risk measures are defined according to whether one wants to assess the risk associated with cash flow over a single year or the cumulative income over the lifetime, which changes the way in which the uncertainty associated with annual variations is taken into account. When quantifying the risk over a single year, the uncertainty of climate |
| Transposition factor                              | variability is taken into account in its entirety. Over a longer observation period, this same uncertainty is<br>reduced since less sunny years are generally compensated by years with more sun.<br>The Transposition Factor is the ratio of the incident irradiation (GlobInc) on the plane, to the horizontal<br>irradiation (GlobHor). I.e. what you gain (or loose) when tilting the collector plane. It may be defined in<br>hourly, daily, monthly or yearly values.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Perez model                                       | It is computed by applying a transposition model to the horizontal hourly values. The models that PVSyst<br>offers are the Hay and Perez model. The result depends namely on the diffuse irradiance.<br>The Perze model is a transposition model, which is a more sophisticated model requiring good (well<br>measured) horizontal data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

# Table of Contents

| Summary                                                                                                                   |   |
|---------------------------------------------------------------------------------------------------------------------------|---|
| Glossary                                                                                                                  |   |
| Introduction                                                                                                              | 6 |
| Site overview                                                                                                             | 6 |
| System design                                                                                                             | 7 |
| Layout                                                                                                                    | 7 |
| Heritage                                                                                                                  | 8 |
| Long Term Yield Assessment                                                                                                |   |
| Project overview                                                                                                          |   |
| Meteorological data<br>Global irradiation and temperature<br>Monthly breakdown                                            |   |
| Yield calculation<br>Mean expected yield (P50)<br>Uncertainties affecting yield estimates<br>Yearly and monthly breakdown |   |
| Cost estimate                                                                                                             |   |
| Conclusions                                                                                                               |   |
| ANNEX A: Balancing of System (BoS) costs for solar PV                                                                     |   |

### Introduction

The Clean Energy Transition Agenda of the Cres-Lošinj archipelago was developed in 2019 by the Island Development Agency OTRA and key stakeholders from the islands. This strategic plan identified electricity as one of the main pillars of the archipelago's clean energy transition, with a strong focus given to solar PV. Currently, potential locations of solar PV development are being investigated by the Island Development Agency. This report outlines a pre-feasibility study for a solar carport next to the port of Mali Lošinj.

### Site overview

The location of the proposed photovoltaic installation is in a carpark next to the mooring area for boats in the town of Mali Lošinj, Cres-Lošinj archipelago, Croatia. The project is identified as the INSOLCARPARK. It is a carpark solar roof project.

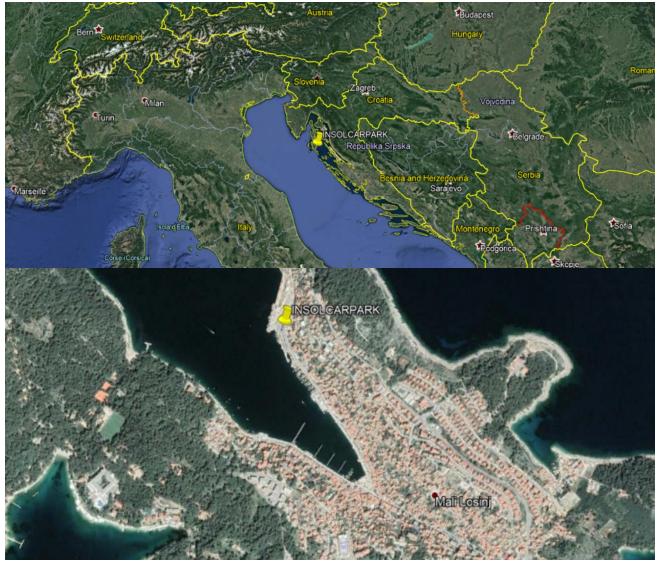



Figure 1: Site location

# System design

A solar carpark consists of solar PV modules that are mounted on a support frame over the parking bays of a car park. The solar carpark provides shading for the vehicles underneath it, while also generating electricity. A typical setup is illustrated in Figure 2.

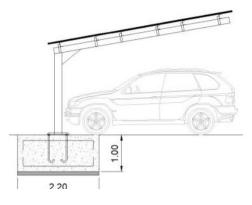



Figure 2: Typical solar carpark setup (source: SOLARSTEM brochure)

#### Layout

The solar PV system layout is based on the available drawings. The intention of the design is to maximize the available solar energy production using the available space while working within the technology and site limitations. The PV modules cover all of the parking bays and parts of the roadways. This maximises the system size and shading effect for vehicles. The tilt angle of the modules are 4 degrees with a total of 942 PV modules, representing a total capacity of 518 kWp. A layout is provided in the Figure 3.

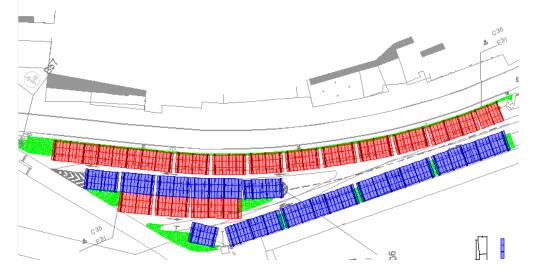



Figure 3: Solar module layout, red represents east facing modules and blue represent west facing modules.

### Heritage

Heritage decisions need to be taken by a heritage council. However, the visual impact of the system can be adjusted by adjusting the tilt angle of the modules. A flat (O degrees) angle will have a minimal impact when viewed from street level, whereas a more upright angle will have a more prominent visual impact from street level. The proposed 4 degrees tilt angle is sufficiently low to reduce the visual impact. Some existing car park designs are shown in Figure 4.



Figure 4: Examples of solar carpark installations. (Source: SOLARSTEM brochure)

It is important to note that the visual impact of a solar roof compared to a standard roof will be similar. Any modification to the tilt angle will affect the energy production of the solar PV system.

## Long Term Yield Assessment

The objective of this section is to calculate the long-term yield of the PV system associated with several confidence intervals. To do this, different sources of meteorological data were used to estimate the most realistic yield. Dynamic simulation models (PVsyst) are used to characterise the system's behaviour and calculate the corresponding output. Both the uncertainties affecting the solar resource as well as the system's efficiency were taken into account to determine the statistical characteristics of the predicted values. Using these data, the expected average output (P50) is calculated to better quantify the risks associated with the PV project, particularly in its first year of operation. In conjunction with the long-term yield study, it is recommended that a system design audit be conducted to assess the risks associated with detailed engineering.

### **Project overview**

Simulation parameters are based on documents provided by the Client. The main system parameters are summarised in Table 2.

Table 2: System parameters

| PARAMETER                  | VALUE                     | UNIT     |
|----------------------------|---------------------------|----------|
| System peak power          | 518.10                    | kWp      |
| Latitude                   | 44.5361                   | °N       |
| Longitude                  | 14.4656                   | °E       |
| Altitude                   | 1                         | m a.s.l. |
| Tilt                       | 4                         | 0        |
| Azimuth                    | Multi (95, 72, -90, -107) | 0        |
| Type of modules            | Longi LR5-72HPH-550W      |          |
| Nb of modules              | 942                       |          |
| Type of inverters          | Huawei SUN2000-105KTL     |          |
| Nb of inverters            | 4                         |          |
| Type of structures         | Fixed tilt                |          |
| Topography (if applicable) | Flat terrain              |          |

### Meteorological data

#### Global irradiation and temperature

A variety of meteorological data sources were considered for the yield study. Table 3 gives a comparison of horizontal irradiation results.

Table 3: Global irradiation on the horizontal plane (kWh/m²/year)

| SOURCE         | No. of years | Average irradiation |
|----------------|--------------|---------------------|
| Soda-HelioClim | 16           | 1,553               |
| 3E Solar Data  | 16           | 1,495               |
| PVGIS-CMSAF    | 10           | 1,507               |
| SolarGIS       | 26           | 1,485               |

Each horizontal irradiation source was used to calculate the yield before combining the results by using a statistical weighting function. This function takes into account the specific characteristics of the data, such as the number of years available and the uncertainty of resource quantification according to the author's own experience. Table 4 shows the weighted horizontal irradiation as well as the in-plane irradiation. These weighted values are given as an indication only since they are not directly used in the calculations. The transposition factor is obtained from the irradiation data of 3E Solar Data and the Perez transposition model. The ambient temperature used in the simulations is also presented. It comes from 3E Solar Data's database.

Table 4: Weighted irradiation, transposition factor and temperature

| PARAMETER                       | VALUE | UNIT      |
|---------------------------------|-------|-----------|
| Weighted horizontal irradiation | 1,503 | kWh/m²/yr |
| Transposition factor            | 0.1%  |           |
| In-plane irradiation            | 1,504 | kWh/m²/yr |
| Ambient temperature             | 16.6  | °C        |

### Monthly breakdown

The monthly breakdown of the meteorological data is given in Table 5.

Table 5: Monthly breakdown of the meteo-data

| MONTH     | HORIZONTAL IRRADIATION (kwh/m²) | IN-PLANE IRRADIATION<br>(kwh/m²) | AMBIENT TEMPERATURE<br>(°C) |
|-----------|---------------------------------|----------------------------------|-----------------------------|
| January   | 41                              | 42                               | 11.1                        |
| February  | 64                              | 64                               | 10.6                        |
| March     | 114                             | 114                              | 9.8                         |
| April     | 153                             | 153                              | 13.8                        |
| May       | 192                             | 192                              | 17.1                        |
| June      | 213                             | 214                              | 22.9                        |
| July      | 224                             | 224                              | 24.3                        |
| August    | 193                             | 194                              | 23.4                        |
| September | 137                             | 138                              | 20.9                        |
| October   | 88                              | 88                               | 18.9                        |
| November  | 46                              | 46                               | 13.3                        |
| December  | 37                              | 37                               | 12.3                        |
| Year      | 1,503                           | 1,504                            | 16.6                        |

### **Yield calculation**

3E calculated the system performance by using dynamic models (PVSyst v7.2) as well as its own assessment tool (LTYA v2.9). Table 6 gives a summary of the system performance loss assumptions.

Table 6: System performance loss assumptions

| PARAMETERS                                            | ASSUMPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Horizon shading                                       | The horizon shading line was considered. It was extracted from SolarGIS Prospect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Dirt and soiling                                      | Soiling losses were estimated at 1.5%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Near shading: irradiance loss                         | Shading losses were considered based on project Google Earth imagery, indicating the presence of large buildings near the site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                       | North Control |  |
| Reflection (IAM)                                      | Usual glass parametrisation was considered (Ashrae b0=0.05).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Irradiance dependencies                               | PV module file from the PVsyst database (PAN-file).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Near shading: electrical loss<br>according to strings | Electrical loss from strings were not considered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Power tolerance of modules                            | A quality gain based on the power tolerance stated in the product datasheet was assumed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Temperature dependencies                              | Simulations consider the rear surface of the PV modules are open (Uc=29 W/m <sup>2</sup> .K).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Light induced degradation<br>(initial)                | LID is estimated at 0% for the selected modules, n-type.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Mismatching                                           | Module mismatch losses were estimated at 0.4% for unsorted PV modules. String mismatch is supposed to be 0.1%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| DC cabling                                            | DC cable calculations were not provided. Corresponding losses were assumed to be 1.5% at STC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| nverter                                               | The inverter file from the EPC (OND-file) was used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AC cabling                                            | AC cable calculations were not provided. Corresponding losses were assumed to be 1%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

The plant availability and module degradation rate were considered to estimate the system performance over the project lifetime. They both are described in Table 7.

Table 7: System performance loss assumptions - lifetime

| PARAMETER                          | ASSUMPTION                                                                                |
|------------------------------------|-------------------------------------------------------------------------------------------|
| Availability                       | A commercial availability of 99% was considered. Grid availability is assumed to be 100%. |
| Annual degradation factor (ageing) | Annual degradation is estimated at 0.5%/year.                                             |

#### Mean expected yield (P50)

Table 8 shows the average expected yield (P50) of the system. As mentioned, results are obtained by weighting the results obtained from the different meteorological sources.

Table 8: Mean expected yield (P50)

| PARAMETER                                             | VALUE | UNIT             |  |
|-------------------------------------------------------|-------|------------------|--|
| System peak power                                     | 51    | 18.10 kWp        |  |
| Performance ratio at plant start-up (PR) <sup>1</sup> | 88    | 8.3%             |  |
| Plant availability                                    | 99    | 9.0%             |  |
| Yearly degradation factor                             | -(    | 0.5%             |  |
| Specific yield – Year 1 <sup>2</sup>                  | 1     | 1,313 kWh/kWp/yr |  |
| System yield – Year 1                                 |       | 680 MWh/yr       |  |
| System yield – 20 Years                               | 12    | 2,976 MWh        |  |

#### Uncertainties affecting yield estimates

The expected yield is affected by several uncertainties of different types. The uncertainty due to the climate variability is stochastic and its effect is levelled out when calculating long-term averages. Most other uncertainties, e.g. those related to the modelling, the site or the system, are systematic and its effect is not levelled out when calculating long-term averages. The uncertainties affecting the yield estimates are summarised in Table 9. All uncertainty values are standard deviations and apply to well-functioning systems. Negative outliers in performance due to bad installation, low-quality components or extreme local conditions (e.g. heavy soiling or unidentified shading) are not taken into account in these uncertainties. The uncertainty values have been determined by 3E based on an extensive literature study and own calculations.

Table 9: Uncertainties considered for the calculation of the probabilities

| UNCERTAINTY                      | VARIABLE                | VALUE |
|----------------------------------|-------------------------|-------|
| Due to the yearly variation      | Climate variability     | 2.8%  |
| Affecting the resource           | Resource quantification | 3.5%  |
| estimation                       | In-plan conversion      | 2.0%  |
| Affecting the system performance | Optical                 | 1.3%  |
|                                  | Module                  | 1.2%  |
|                                  | Electrical              | 1.1%  |
|                                  | Degradation             | 0.3%  |

<sup>&</sup>lt;sup>1</sup> PR without plant and module degradation

<sup>&</sup>lt;sup>2</sup> Including availability and average degradation during year 1

#### Yearly and monthly breakdown

Table 10 shows the yearly performance ratio, as well as the corresponding P50 results.

Table 10: Yearly performance ratio and expected yield

| YEAR | PERFORMANCE RATIO (PR) | SYSTEM YIELD P50 (MWh) |
|------|------------------------|------------------------|
| 1    | 87.2%                  | 680                    |
| 2    | 86.8%                  | 677                    |
| 3    | 86.3%                  | 673                    |
| 4    | 85.9%                  | 670                    |
| 5    | 85.5%                  | 667                    |
| 6    | 85.0%                  | 663                    |
| 7    | 84.6%                  | 660                    |
| 8    | 84.2%                  | 657                    |
| 9    | 83.8%                  | 653                    |
| 10   | 83.4%                  | 650                    |
| 11   | 82.9%                  | 647                    |
| 12   | 82.5%                  | 644                    |
| 13   | 82.1%                  | 640                    |
| 14   | 81.7%                  | 637                    |
| 15   | 81.3%                  | 634                    |
| 16   | 80.9%                  | 631                    |
| 17   | 80.5%                  | 628                    |
| 18   | 80.1%                  | 625                    |
| 19   | 79.7%                  | 622                    |
| 20   | 79.3%                  | 618                    |

Table 11 shows the monthly values for the performance ratio and the average yield (P50) at year 1.

Table 11: Monthly performance ratio and system yield at year 1

| MONTH     | PERFORMANCE RATIO (PR)<br>- YEAR 1 | SYSTEM YIELD (P50) - YEAR<br>1 (MWh) |  |
|-----------|------------------------------------|--------------------------------------|--|
| January   | 88.1%                              | 19                                   |  |
| February  | 89.9%                              | 30                                   |  |
| March     | 90.8%                              | 54                                   |  |
| April     | 89.2%                              | 71                                   |  |
| May       | 87.3%                              | 87                                   |  |
| June      | 85.7%                              | 95                                   |  |
| July      | 85.4%                              | 99                                   |  |
| August    | 86.3%                              | 87                                   |  |
| September | 87.4%                              | 62                                   |  |
| October   | 87.5%                              | 40                                   |  |
| November  | 87.8%                              | 21                                   |  |
| December  | 86.7%                              | 17                                   |  |
| Year      | 87.2%                              | 680                                  |  |

The expected yields with 100% availability at various probabilities are listed in Table 12.

| PARAMETER                              | VALUE      | UNIT                |
|----------------------------------------|------------|---------------------|
| System   specific yield (P50) - year 1 | 687   1326 | MWh/yr   kWh/kWp/yr |
| System   specific yield (P75) - year 1 | 667   1287 | MWh/yr   kWh/kWp/yr |
| System   specific yield (P90) - year 1 | 648   1251 | MWh/yr   kWh/kWp/yr |
| System   specific yield (P99) - year 1 | 616   1190 | MWh/yr   kWh/kWp/yr |

Table 12: Expected yield with various probabilities (100% availability)

### Cost estimate

A cost estimation is provided in this section. Please note that the costs are dependent on various local factors, which includes technology, labour, duties, taxes, among other. A more relevant and accurate cost estimate will be subject to an official quote by a service provider. The costs, excluding tax, are estimated from previous projects that 3E worked on, and are summarised in Table 13. The capital costs exist of the carport structure on which the solar modules will be mounted, the costs of the solar system itself and some contingency costs.

The cost for the carport structure includes the solar canopies covering 130 parking spaces and allowing to place 942 PV modules, 42 integrated light pillars, the mechanical assembly, and the transportation. The foundation is not yet included. Furthermore, these figures are derived from projects in Portugal so the costs could differ somewhat in Croatia.

The cost for the solar system includes the hardware (PV modules, inverters, the non-module hardware), the installation, and soft costs as indicated in ANNEX A: Balancing of System (BoS) costs for solar PV. This is estimated at €922/kW for utility scale solar PV in Croatia based on the most recent power generation cost breakdown by IRENA<sup>3</sup>, which is also in line with what 3E sees in the field. Additionally, 3E sees it as best practice to include 5% of the total CAPEX for contingency reasons.

Table 13: System costs

| ID | Parameter                               | Value (EUR) |  |
|----|-----------------------------------------|-------------|--|
| Α  | CAPEX (excl. tax)                       |             |  |
| 1  | Capital cost of carport structure       | 75,280      |  |
| 2  | Capital cost of solar system (€922/kWp) | 477,600     |  |
| -  | Spares and contingency (5%)             | 27,645      |  |
|    | Total CAPEX                             | 580,525     |  |
| В  | OPEX (excl. tax)                        |             |  |
| 1  | . Annual O&M cost (€9/kWp)              | 4,660       |  |
|    |                                         |             |  |

<sup>&</sup>lt;sup>3</sup> IRENA, Power Generation Costs 2020, https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020

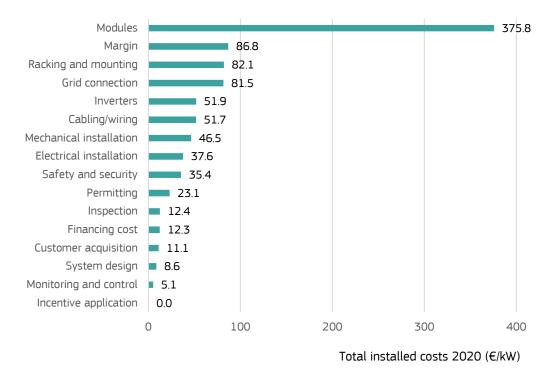



Figure 5 Detailed breakdown of utility-scale solar PV total installed cost in Croatia, 2020 (source: IRENA Power Generation Costs 2020)

Operation and maintenance are all activities or programs linked to the correct and efficient operation of the PV installation. Operation ranges from the supervision and operation of the installation to planning preventive maintenance or predicting capacity. Maintenance refers to the maintenance of the PV installation itself, as well as the maintenance of the site. PV maintenance refers to the replacement or repair of all possible components of the PV system, from the modules and the loadbearing structure to the wiring of each component. Site maintenance refers to activities such as site supervision and compliance with environmental regulations.

The average utility-scale O&M costs in Europe are estimated at  $\in$ 9/kW per year, according to the latest IRENA report<sup>3</sup>. This includes costs such as insurance and asset management as well. However, it does not include the replacement cost for the inverters after 10 – 15 years. This should be accounted for when considering the long-term financial impact of operating a solar PV system over the project lifespan of 20 years.

## Conclusions

This study indicates that a 518.10 kWp solar PV car park at Cres-Lošinj will produce 12,976 MWh of electricity over a project lifespan of 20 years, based on a P50 probability. The system will cost approximately €580,525 to construct.

# ANNEX A: Balancing of System (BoS) costs for solar PV

| Category                               | Description                                                                                                                                                                                                                                                                                       |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Non-module hardware                    |                                                                                                                                                                                                                                                                                                   |
| Cabling                                | <ul> <li>All direct current (DC) components , such as DC cables, connectors and DC combiner boxes</li> <li>All AC low voltage components, such as cables, connectors and AC combiner boxes</li> </ul>                                                                                             |
| Racking and mounting                   | <ul> <li>Complete mounting system including ramming profiles, foundations and all material for assembling</li> <li>All material necessary for mounting the inverter and all type of combiner boxes</li> </ul>                                                                                     |
| Safety and security                    | <ul> <li>Fences</li> <li>Camera and security system</li> <li>All equipment fixed installed as theft and/or fire protection</li> </ul>                                                                                                                                                             |
| Grid connection                        | <ul> <li>All medium voltage cables and connectors</li> <li>Switch gears and control boards</li> <li>Transformers and/or transformer stations</li> <li>Substation and housing</li> <li>Meter(s)</li> </ul>                                                                                         |
| Monitoring and control                 | <ul> <li>Monitoring system</li> <li>Meteorological system (<i>e.g.</i>, irradiation and temperature sensor)</li> <li>Supervisory control and data system</li> </ul>                                                                                                                               |
| Installation                           |                                                                                                                                                                                                                                                                                                   |
| Mechanical installation (construction) | <ul> <li>Access and internal roads</li> <li>Preparation for cable routing (<i>e.g.</i>, cable trench, cable trunking system)</li> <li>Installation of mounting/racking system</li> <li>Installation of solar modules and inverters</li> <li>Installation of grid connection components</li> </ul> |
| Electrical installation                | <ul> <li>DC installation (module interconnection and DC cabling)</li> <li>AC medium voltage installation</li> <li>Installation of monitoring and control system</li> <li>Electrical tests (<i>e.g.</i>, DC string measurement)</li> </ul>                                                         |
| Inspection (construction supervision)  | <ul><li>Construction supervision</li><li>Health and safety inspections</li></ul>                                                                                                                                                                                                                  |
| Soft costs                             |                                                                                                                                                                                                                                                                                                   |
| Incentive application                  | All costs related to compliance in order to benefit from support policies                                                                                                                                                                                                                         |
| Permitting                             | <ul> <li>All costs for permits necessary for developing, construction and operation</li> <li>All costs related to environmental regulations</li> </ul>                                                                                                                                            |
| System design                          | <ul> <li>Costs for geological surveys or structural analysis</li> <li>Costs for surveyors</li> <li>Costs for conceptual and detailed design</li> <li>Costs for preparation of documentation</li> </ul>                                                                                            |
| Customer acquisition                   | <ul> <li>Costs for project rights, if any</li> <li>Any type of provision paid in order to get project and/or off-take agreements in place</li> </ul>                                                                                                                                              |
| Financing costs                        | All financing costs necessary for development and construction of PV system, such as costs for construction finance                                                                                                                                                                               |

| Margin | • | Margin for EPC company and/or for project developer for development<br>and construction of PV system includes profit, wages, finance, customer<br>service, legal, human resources, rent, office supplies, purchased corporate<br>professional services and vehicle fees |
|--------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|